Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Akiko Asano, ${ }^{\text {a }}$ Taizo Taniguchi, ${ }^{\text {b }}$

 Masahiro Sasaki, ${ }^{\text {b }}$ HiroshiHasegawa, ${ }^{\text {b }}$ Yoshio Katsuya ${ }^{c}$ and Mitsunobu Doi ${ }^{\text {a }}$
${ }^{\text {a }}$ Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan, ${ }^{\mathbf{b}}$ Hyogo Institute for Aging Brain and Cognitive Disorders, 520 Saisho-ko, Himeji 6700981, Japan, and ${ }^{\mathrm{c}}$ Hyogo Prefectural Institute of Industrial Research, 3-1-12 Yukihira-cho, Suma, Kobe 654-0037, Japan

Correspondence e-mail: doit@gly.oups.ac.jp

Key indicators

Single-crystal synchrotron study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA$
Disorder in main residue
R factor $=0.097$
$w R$ factor $=0.259$
Data-to-parameter ratio $=8.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

A $\boldsymbol{\beta}$-sheet structure formed by $\mathrm{C}-\mathrm{H} \ldots \mathrm{O}$ hydrogen bonds between the thiazole rings and amide bonds of a dimeric desoxazoline ascidiacyclamide analogue

A dimeric analogue of desoxazoline ascidiacyclamide was synthesized to increase the conformational flexibility of the molecule. The overall structure of this compound, $\mathrm{C}_{72} \mathrm{H}_{112} \mathrm{~N}_{16} \mathrm{O}_{16} \mathrm{~S}_{4} \cdot 3 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} \cdot \mathrm{H}_{2} \mathrm{O}$, was relatively flat and was classified neither as the folded nor squared form, which have been observed in ascidiacyclamide analogues. Rather, a unique β-sheet was formed in the 48 -membered ring with pseudo-twofold symmetry. This was stabilized by hydrogen bonds including $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between thiazole and carbonyl O atoms. This is the first structure of an ascidiacyclamide analogue to exhibit a flat conformation composed of a β-sheet.

Comment

Ascidiacyclamide (ASC) is a cytotoxic peptide isolated from marine organisms (Ireland et al., 1982; Hamamoto et al., 1983),

D-Val
Ascidiacyclamide (ASC)

D-Val
desoxazoline-ascidiacyclamide (dASC)

desoxazoline-ascidiacyclamide dimer (dASC2)
and includes unusual amino acids, thiazole (Thz) and oxazoline (Oxz). Two major structures are known for this peptide

Figure 1
A view of dASC2 with the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Dashed lines represent hydrogen bonds. The solvent molecules are shaded.

Figure 2
Top view of the peptide backbone. Side chains have been omitted for clarity ($\mathrm{C} \beta$ atoms only are drawn). Dashed lines represent hydrogen bonds.

Figure 3
Side view of the peptide backbone. Side chains have been omitted for clarity ($\mathrm{C} \beta$ atoms only are drawn).
(Ishida et al., 1989). We have attempted to control its structure by chemical modification, e.g. substitution of amino acids or changing the chirality (Doi et al., 1999). The conformations of ASC analogues seem to be restricted by the rigid blocks composed of Thz and Oxz, since these blocks limit the rotations of peptide backbones ($\mathrm{N}-\mathrm{C} \alpha$ and $\mathrm{C} \alpha-\mathrm{C}$ bonds). Therefore, we tried to break the Oxz blocks to increase backbone flexibility. The Oxz block is synthesized from threonine and modification would result in threonine residues in place of the Oxz blocks. Threonine has two chiral C atoms at the α and β positions, and both C atoms could be targets of the chiral modifications (a diastereomer of threonine at the $\mathrm{C} \beta$ position is named allo-threonine, aThr). Such desoxazolineASC analogues (dASC) prefer a single conformation, viz. a folded form (Asano et al., 2001). It was postulated that the molecular size of these cyclic peptides (24-membered ring) could limit the conformational variations.

Thus, we attempted a dimerization of these dASC diastereomers to give more conformational freedom to the peptide backbone. The dimeric desoxazoline-ASC (dASC2) analogues have a 48 -membered ring in place of the 24 -membered ring of ASC in dASC analogues. Crystals of [Thr,D-aThr]dASC2 were obtained from the dASC2 diastereomers. The structure of this analogue is completely different from the folded or squared structure of ASC and a related peptide, patellamide (Schmitz et al., 1989). We report here the crystal structure of [D-aThr,Thr]-dASC2.

Crystals of [D-aThr,Thr]-dASC2 were grown in aqueous dimethylformamide (DMF) solution and the X-ray diffraction data were measured on a synchrotron source. The structure is shown in Fig. 1. The peptide is slightly twisted, but no large folding is observed. In dASC analogues, the peptide molecules are folded such that the Thz rings face each other (Asano et al., 2001), and the Thz-Thz stacking is a notable feature of a folded dASC. In this structure, the four Thz rings are separated from each other and no stacking is observed. The Thz4
and Thz12 rings are both roughly perpendicular to the Thz8 and Thz16 rings; the angles between the least-squares planes are Thz4 \cdots Thz8 $=85.7^{\circ}$, Thz $4 \cdots$ Thz16 $=84.2^{\circ}$, Thz12 \cdots Thz 8 $=78.2^{\circ}$ and Thz12 \cdots Thz16 $=76.9^{\circ}$. The conformation of the peptide backbone is shown in Figs. 2 and 3. The peptide backbone forms a unique β-sheet structure (Fig. 2). In this β sheet, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are formed between the Thz and carbonyl O atoms (Table 2): C24(Thz4) \cdots O96(Thr14) $=$ 3.158 (11) \AA and $\mathrm{C} 78($ Thz12 $) \cdots \mathrm{O} 42($ Thr6 $)=3.190$ (12) \AA. Such hydrogen bonds lead to a parallel arrangement of Thz4 and Thz12; the angle between the least-squares planes of Thz4 and Thz12 is 23.2°. Consequently, the 48 -membered ring is relatively flat (Fig. 3). Furthermore, the peptide has a repeated sequence, and structural symmetry is found in the torsion angles of the backbone (Table 1). Although this implies the existence of a pseudo-twofold axis in the molecule, the crystallographic symmetry is distorted by local conformations and interactions with the solvent molecules; O39(Thr6)... $\mathrm{O} 119(\mathrm{DMF})=2.579(24) \AA$ A $\mathrm{N} 70(\mathrm{D}-\mathrm{Val11}) \cdots \mathrm{O} 114(\mathrm{DMF})=$ $2.963(13) \AA$ A, $\mathrm{N} 16(\mathrm{D}-\mathrm{Val} 3) \cdots \mathrm{O} 109(\mathrm{DMF})=2.965(9) \AA$ and O93(Thr14) $\cdots \mathrm{O} 124(\mathrm{~W})=2.717$ (22) \AA.

The conformational properties which were found in the folded and squared structures of ASC and dASC analogues are not found in the structure of [$\mathrm{D}-\mathrm{aThr}, \mathrm{Thr}$]-dASC2. The molecule is relatively flat, with accompanying slight twisting, and a unique β-sheet is formed, involving $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Dimerization gives conformational flexibility to the peptide molecule, and the resulting novel flat structure is the first such example in ASC analogues.

Experimental

dASC and dASC2 analogues were synthesized by a previously reported method (Hamada et al., 1987). Dimerization of dASC was controlled by the concentration of starting linear peptides. The
cyclization reaction was performed in $10 \mathrm{~m} M$ of the linear peptide, but dimerization mainly occurred above this concentration. dASC2 analogues (ca 20 mg) were dissolved in DMF (0.2 ml), and water was added to the solution just before the solution became unclear. The aqueous DMF solution was sealed in vials at room temperature. A crystal was mounted on a nylon loop in the mother liquor, and frozen under a nitrogen stream (100 K).

Crystal data

$\mathrm{C}_{72} \mathrm{H}_{112} \mathrm{~N}_{16} \mathrm{O}_{16} \mathrm{~S}_{4} \cdot 3 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1823.32$
Monoclinic, $P 2_{1}$ 。
$a=11.5563$ (1) A
$b=9.9957$ (2) \AA
$c=42.9208(10) \AA$
$\beta=91.3492(15)^{\circ}$
$V=4956.55(16) \AA^{3}$
$Z=2$
$D_{x}=1.222 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Rigaku RAXIS-IV diffractometer

Oscillation scans

Absorption correction: cylindrical
(CYLABS; Nardelli, 1998)
$T_{\text {min }}=0.657, T_{\text {max }}=0.661$
15629 measured reflections
8977 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.097$
$w R\left(F^{2}\right)=0.259$
$S=1.25$
8977 reflections
1119 parameters
H -atom parameters constrained

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N9-H12 . ${ }^{\text {O }} 12$	0.86	2.57	2.779 (7)	95
N16-H19...O12	0.86	2.64	2.957 (6)	103
C24-H28 . O 96	0.93	2.60	3.158 (11)	119
N36-H40 . . O81	0.86	2.44	3.240 (9)	155
O39-H43 . O 119	0.84	1.78	2.58 (2)	157
N63-H68 . ${ }^{\text {O66 }}$	0.86	2.55	2.784 (7)	97
N70-H75 . O 66	0.86	2.76	2.942 (7)	94
N70-H75 \cdots O114	0.86	2.15	2.963 (13)	157
C78-H84...O42	0.93	2.29	3.190 (12)	164
N90-H96 . . O 27	0.86	2.13	2.952 (10)	161
O93-H99. . O124	0.85	1.88	2.72 (2)	172
O124-H135 . . O 81	0.85	1.95	2.80 (2)	174
N16-H19...O109 ${ }^{\text {i }}$	0.86	2.12	2.965 (9)	167
$\mathrm{O} 12-\mathrm{H} 15 \cdots \mathrm{O} 8^{\text {ii }}$	0.82	1.91	2.712 (6)	167
N9-H12 . ${ }^{\text {O }}$ 15 ${ }^{\text {ii }}$	0.86	2.10	2.873 (6)	150
N43-H47 . OO89 ${ }^{\text {iii }}$	0.86	2.02	2.862 (8)	166
O66-H71 . $\mathrm{O} 2^{\text {iv }}$	0.82	1.86	2.684 (7)	179
N63-H68 . . $\mathrm{O}^{\text {6 }}{ }^{\text {iv }}$	0.86	2.02	2.823 (7)	154
	0.86	2.31	3.059 (9)	146

Symmetry codes: (i) $x, 1+y, z$; (ii) $-x, \frac{1}{2}+y,-z$; (iii) $x-1, y, z ;$ (iv) $-x, \frac{1}{2}+y, 1-z$; (v) $1+x, y, z$.

Table 2
Selected torsion angles $\left({ }^{\circ}\right)$.

C107-N1-C2-C7	$\varphi 1$	-128.0 (6)
N1-C2-C7-N9	$\psi 1$	158.6 (5)
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{N} 9-\mathrm{C} 10$	$\omega 1$	177.0 (5)
C7-N9-C10-C14	$\varphi 2$	54.2 (7)
N9-C10-C14-N16	$\psi 2$	43.0 (6)
C10-C14-N16-C17	$\omega 2$	174.9 (5)
C14-N16-C17-C21	$\varphi 3$	120.2 (5)
N16-C17-C21-N22	$\psi 3$	169.3 (5)
$\mathrm{C} 17-\mathrm{C} 21-\mathrm{N} 22-\mathrm{C} 23$	$\omega 3$	172.1 (6)
$\mathrm{C} 21-\mathrm{N} 22-\mathrm{C} 23-\mathrm{C} 26$	$\varphi 4$	-179.7 (7)
N22-C23-C26-N28	$\psi 4$	-4.0 (12)
C23-C26-N28-C29	$\omega 4$	-172.4 (8)
C26-N28-C29-C34	$\varphi 5$	-138.5 (9)
N28-C29-C34-N36	$\psi 5$	138.3 (9)
C29-C34-N36-C37	$\omega 5$	167.3 (8)
C34-N36-C37-C41	$\varphi 6$	-138.6 (9)
N36-C37-C41-N43	$\psi 6$	132.2 (8)
C37-C41-N43-C44	$\omega 6$	-177.8 (7)
C41-N43-C44-C48	$\varphi 7$	95.4 (8)
N43-C44-C48-N49	$\psi 7$	-154.2 (7)
C44-C48-N49-C50	$\omega 7$	179.6 (7)
C48-N49-C50-C53	$\varphi 8$	-178.1 (7)
N49-C50-C53-N55	$\psi 8$	-4.8 (10)
C50-C53-N55-C56	$\omega 8$	171.7 (6)
C53-N55-C56-C61	$\varphi 9$	-129.8 (7)
N55-C56-C61-N63	$\psi 9$	151.6 (5)
C56-C61-N63-C64	$\omega 9$	171.2 (5)
C61-N63-C64-C68	$\varphi 10$	63.9 (7)
N63-C64-C68-N70	$\psi 10$	32.5 (7)
C64-C68-N70-C71	$\omega 10$	173.2 (5)
C68-N70-C71-C75	$\varphi 11$	120.5 (6)
N70-C71-C75-N76	$\psi 11$	157.4 (6)
C71-C75-N76-C77	$\omega 11$	174.1 (7)
C75-N76-C77-C80	$\varphi 12$	178.8 (8)
N76-C77-C80-N82	$\psi 12$	-2.8 (12)
C77-C80-N82-C83	$\omega 12$	-170.0 (8)
C80-N82-C83-C88	$\varphi 13$	-102.1 (10)
N82-C83-C88-N90	$\psi 13$	132.2 (8)
C83-C88-N90-C91	$\omega 13$	170.9 (8)
C88-N90-C91-C95	$\varphi 14$	-134.9 (8)
N90-C91-C95-N97	$\psi 14$	125.0 (8)
C91-C95-N97-C98	$\omega 14$	174.2 (7)
C95-N97-C98-C102	$\varphi 15$	84.8 (8)
N97-C98-C102-N103	$\psi 15$	-146.4 (7)
C98-C102-N103-C104	$\omega 15$	179.7 (6)
C102-N103-C104-C107	$\varphi 16$	-178.2 (6)
N103-C104-C107-N1	$\psi 16$	-7.4 (10)
C2-N1-C107-C104	$\omega 16$	171.0 (6)

A total of 90 images with oscillation-angle of 2° were measured on a synchrotron using RAXIS-IV, and the first 87 frames were processed by MOSFLM (Leslie, 1999). The 37199 observed reflections were successively processed by the CCP4 program suite (CCP4, 1994), and the reflections were merged to 17325 reflections with an $R_{\text {merg }}$ value of 0.060 . The structure was solved using all reflections. H atoms of the peptide were positioned at calculated positions and constrained during the refinement. H atoms of the water molecules were positioned by considering the hydrogen-bonding networks and fixed during the refinement. The resolution of the diffraction data was $0.80 \AA$, but reflections of $0.83-0.80 \AA$ resolution were omitted in the final refinement stage because of the higher R value of that shell. Disorder was observed in the D -Val7 side chain, relating to the rotation of the $\mathrm{C} \alpha-\mathrm{C} \beta$ bond. The occupancies of the two disordered sites were 0.59 and 0.41 .

Data collection: PROCESS (Higashi, 1996); cell refinement: MOSFLM (Leslie, 1999); data reduction: MOSFLM; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular
graphics: PLATON (Spek, 1998); software used to prepare material for publication: PARST (Nardelli, 1995).

The beam time of SPring-8/BL24 for this study was provided from Hyogo Prefecture and Japan Synchrotron Radiation Research Institute (Approval No. C00A24XU5003 N).

References

Asano, A., Doi, M., Kobayashi, K., Arimoto, M., Ishida, T., Katsuya, Y., Mezaki, Y., Hasegawa, H., Nakai, M., Sasaki, M., Taniguchi, T. \& Terashima, A. (2001). Biopolymers, 58, 295-304.

CCP4 (1994). Acta Cryst. D50, 760-763.
Doi, M., Shinozaki, F., In, Y., Ishida, T., Yamamoto, D., Kamigauchi, M., Sugiura, M., Hamada, Y., Kohda, K. \& Shioiri, T. (1999). Biopolymers, 49, 459-469.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hamada, Y., Shibata, M., Sugiura, T., Kato, S. \& Shioiri, T. (1987). J. Org. Chem. 52, 1252-1255.
Hamamoto, Y., Endo, M., Nakagawa, M., Nakanishi, T. \& Mizukawa, K. (1983). J. Chem. Soc. Chem. Commun. pp. 323-324.

Higashi, T. (1996). PROCESS4. Rigaku Corporation, Tokyo, Japan.
Ireland, C. M., Durso, A. R., Newman, R. J. \& Hacker, M. P. (1982). J. Org. Chem. 47, 1807-1811.
Ishida, T., Ohishi, H., Inoue, M.; Kamigauchi, M., Sugiura, M., Takao, N., Kato, S., Hamada, Y. \& Shioiri, T. (1989). J. Org. Chem. 54, 5337-5343.

Leslie, A. G. W. (1999). MOSFLM. MRC Laboratory of Molecular Biology, Hills Road, Cambridge, England.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nardelli, M. (1998). CYLABS. University of Parma, Italy.
Schmitz, F. J., Ksebati, M. B., Chang, J. S., Wang, J. L., Hossain, M. B., van der Helm, D., Engel, M. H., Serban, A. \& Silfer, J. A. (1989). J. Org. Chem. 54, 3463-3468.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Utrecht University, The Netherlands.

